skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aguilera, Felipe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present geochemical data from gas samples from ~1200 km of arc in the Central Volcanic Zone of the Andes (CVZA), the volcanic arc with the thickest (~70 km) continental crust globally. The primary goals of this study are to characterize and understand how magmatic gases interact with hydrothermal systems, assess the origins of the major gas species, and constrain gas emission rates. To this end, we use gas chemistry, isotope compositions of H, O, He, C, and S, and SO2 fluxes from the CVZA. Gas and isotope ratios (CO2/ST, CO2/CH4, H2O/ST, δ13C, δ34S, 3He/4He) vary dramatically as magmatic gases are progressively affected by hydrothermal processes, reflecting removal and crustal sequestration of reactive species (e.g., S) and addition of less reactive meteoric and crustal components (e.g., He). The observed variations are similar in magnitude to those expected during the magmatic reactivation of volcanoes with hydrothermal systems. Carbon and sulfur isotope compositions of the highest temperature emissions (97–408 ◦C) are typical of arc magmatic gases. Helium isotope compositions reach values similar to upper mantle in some volcanic gases indicating that transcustal magma systems are effective conduits for volatiles, even through very thick continental crust. However, He isotopes are highly sensitive to even low degrees of hydrothermal interaction and radiogenic overprinting. Previous work has significantly underestimated volatile fluxes from the CVZA; however, emission rates from this study also appear to be lower than typical arcs, which may be related to crustal thickness. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. At convergent margins, plates collide producing a subduction process. When an oceanic plate collides with a continental plate, the denser (i.e., oceanic) plate subducts beneath the less dense (continental) plate. This process results in the transportation of carbon and other volatiles into Earth’s deep interior and is counterbalanced by volcanic outgassing. Sampling deeply-sourced seeps and fumaroles throughout a convergent margin allows us to assess the processes that control the inventory of volatiles and their interaction with the deep subsurface microbial communities. The Andean Convergent Margin is volcanically active in four distinct zones: the Northern Volcanic Zone, the Central Volcanic Zone, the Southern Volcanic Zone and the Austral Volcanic Zone, which are each characterised by significantly different subduction parameters like crustal thickness, age of subduction and subduction angle. These differences can change subduction dynamics along the convergent margin, possibly influencing the recycling efficiency of carbon and volatiles and its interaction with the subsurface microbial communities. We carried out a scientific expedition, sampling along a ~800 km convergent margin segment of the Andean Convergent Margin in the Central Volcanic Zone of northern Chile, between 17 °S and 24 °S, sampling fluids, gases and sediments, in an effort to understand interactions between microbiology, deeply-sourced fluids, the crust, and tectonic parameters. We collected samples from 38 different sites, representing a wide diversity of seep types in different geologic contexts. Here we report the field protocols and the descriptions of the sites and samples collected. 
    more » « less
  3. Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace – a multidimensional representation of node ages – and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record. 
    more » « less